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PERIODIC AND ALMOST-PERIQDIC SOLUTIONS 
OF DIFFERENTIAL SYSTEMS 

P. Talpalaru 

This article discusses some problems concerning the 
existence of periodic and almost-periodic solutions of cer- 
tain differential systems. i' 

In this article, we shall consider some problems concerning the existence 
of periodic and almost-periodic solutions of certain differential systems. We 
shall use the fixed-point method (in the form of Banach's theorem) and the 
Lyapunov-function method. 

1. Let A(t)  denote an 12 x $2 matrix satisfying the following two conditions: 

1" A @ )  is continuous and o-periodic; 
2' .the system 

x = A ( t )x,  (1.1) , 

where x E R", has no o-periodic solutions except x( t )  0.. 

Let us denote by X ( t )  the fundamental matrix or" the system (1.1) such that 
X(0) = E . If x = x( l )  is a solution of the system (1. l), then x = x(t + W) ,is 
also a solution. 

We h o w  that 

X ( t  + w) = X ( t )  X(w). 
On the other hand, the matrix B = X( w) - E issuch that B I det (X( 0) - 
- E )  eo. 

' *Numbers in the margin indicate pagination in the foreign text. 
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To see this, let us suppose that det B = 0. Then, there exists a vector 
I I6 + 0 such that 

Blt = (X(w) - E)h = 0. 

The function r(l) = X(t)h is a solution of the system (1. l), and it is'obvious that 
x(t)  s o .  But 

which constitutes a contradiction. 

Let us also note that 

13-1~(") = X(oj)Bg1, X'(W)Z~ = B X ' ( U ) ,  

which follows from the equation 

fi-lX(w) (.Y-1 (w) - I i ) X ( w )  = E - X(0) = X(w)(X- ' ( fJj)-E) = 

x"(w)D-' 

and the equation 
-.. - 

X ( w ) B  =: x ' ( ~ ) ( X ( w )  - E )  = X ( w ) ( E  - X-l(w))Xr(w) = 
= ( S ( w )  - E)+) = B X ( w ) .  .- 

Since 

. 
it follows that 

. -  
X ( t  + w) = X ( t ) X (  w) - 

x- ' (1  $- w) = x-.'( 0)X- ' ( l ) .  

By virtue of conditions loand 2", the system 

where f ( t )  is an w-periodic function, has exactly'one W-periodic solution. More 
precisely, one can prove the 

Lemma. The function i 

I 
k -  - 

I t O  

is an 0-periodic solution of the system (1.2). 
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This lemma can be proven by showing that u(1+ u) = u(t)  and that 

. 
The proof can be found, for example, in [3] and [41. 

In what follows, we shall consider the system 

4 = A ( t ) x  + Xg(t; x ) ,  (1.4) 

where A is a real parameter and &; 9 )  is an operator defined on C(- m, w), 
for t G (- QO, oo) (that is, on the space of continuous bounded functions defined 
on (-w, w), that have values in I(").  To emphasize that the image, under the 
operator g, of a function x ( l )  E C'(-m, 00) is also a function of t,  we shall also 
write ~ ( t ;  N) = ( G N ) ( ~ ) .  

/377 - 

Let I > (  W) denote the Banach space of o-periodic functions defined on the 
real axis with norm IIx~I,' = snp iix(L)iia. 

lE(. @, m) 

Definition 1.1. The operator __ g( l  ; N) defined for (1, x) E (- 30, x,) x P( W) 

is said to be w-periodic i f  Ig(t ; 9)  :7 (G?)(t) E P ( w ) ,  for-,y(t) - E P( a) - 
With the aid of the lemma and the definition, we can easily prove the 

following theorem, which gives the form of the o-periodic solution of the 
system (1.4). I 

Theorem 1.1. If the matrix .4 (1) satisfies conditions lo and 2 O  and the 
operator g(l ; x) is o-periodic, then any o-periodic solution of the system 
(1.4) is an O-periodic solution of the system of integral equations 

I 
._ 

l?-?-w 

1 y(l) = - XS(l) z3- IS( 0) ( x- 1(s) g(s ; y)h, 
I 

4 
- 

(1.5) 

and vice versa. 

Proof: Let x = u(1) denote an w-periodic solution of the system (1.4). 
Define 

. -  

h(t)  = hg(t ; 2 1 )  = h(Gzr)(t), - -  

Then, x = u( l )  is an w-periodic solution of the system 

i = A(1)x + It(& (1.6) 

Since (1.6) has a unique 0-periodic solution, it follows on the basis of the 
lemma that 
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1-r w 

u(/) = - X ( t )  B- 'X( w) X- 1(.~)lr(s)ds, S I' 

4 

Consequently, tt(1) is an w-periodic solution of the system (1.5). , 

Now suppose that x = v(l)  is an w-periodic solution of the system (1.5). 
Then, the function 

: 1(1) = Xg(t ; v )  = h(Gv)(1) ' 

is o-periodic. According to the lemma, the function 

t.1.u 

v(l) = - X(l)B-'lX( a) x- ' (s)Z(s)ds 
I _ -  

S '. I 

is the W-periodic solution of the system 

.2' E= .4 (I) x 4- l(1) j 

that is, .v = T I ( [ )  is the solution of the system (1.4), which proves Theorem 1.1. 

Consider again the system of integral equations (1.5). Let us now write 
8 -  

I 1 . w  

(Ty)(f) = - X X ( f )  B- IS( 6i) x- '(s)g(s ; y)ds. 5 I 

We note that, if conditions 1" and 2" are satisfied and the operator - g(1; y) is 
W-periodic, then the operator T is such that T(f'(6)))  c P ( w ) .  

In what follows, we shall assume that the operator T is defined on the 
space Pjo). 

operator ~ ( 1 ;  x) is w-periodic and satisfies the condition 
Theorem 1.2. If the matrix A(t)  satisfies conditions 1" and 2" and the 

___ 
]!g(t ; x) - g(t : y)ll d LI\x - 3'\;p, ~ 

for every pair N, y E P( w) , then there exists a unique a-periodic solution of the 
system (1.4) for h sufficiently small. 

Proof. Wo have already pointed out that T(Y(  w)) c P(o). Since the space 
IJ( (0)  is a Banach space, it remains to show that the operator T is a contraction 
operator, which will enable us to apply Banach's fixed-point I_._ theorem, taking 
P ( w )  as the fundamental space with the metric 

p(zc, v )  = sup 
(E(-** 0 )  

Ilu(t) - v(l)l\ = 1124 - vllp: 
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Let A denote the domain 0 < t Q w, 0 ,< s .< 2 w  and define 

sup Ip ( l  + o)B-'X- '(s)ll = tu, 
.- 

for t ,  s E A 

If the functions zc(t) and v(l) belong to the space P(w), we have 

and, consequently, 

If we take 

I 
Lilt 01 

1'1 < S 

It follows that T is a contraction operator and Theorem 1.2 is proven. 

kemarks: 1. In the particular case in which 

- .. .. . . - . . . . . . 

I $1) 

g(t ; x) = Ic(l, s, x (s)) ds 

.~ 

S 0 

where X ( L )  is an o-periodic function and the vector-values function k ( t ,  s, x) 
is o-periodic with respect to t and continuous in the domain 

_ _  
Ai = i [ L  E (-w, OO) ,X  E I?, I S /  K Y>,  

the number r being a bound on ~ ( t )  1, similar results have been established by 
I. V. Bykov and M. Imanaliev [3]. 

2. Another interesting special case is that in which g( l  ; N) = g(1: x,) , 
where a < s c 1, and xl = N (s):, that is, g (1 ; x) is a Volterra operator. 

2. In this section, we shall consider the problem of the existence of 
almost-periodic solutions for a certain system of differential equations by 
using a particular Lyapunov function and the fixed-point method. 

- 
I I t  

5 



Let us consider first the system of differential equations 

where f ( C ,  x) E C((--30, w) x A''),, with f(t,, x )  E C1(Rn) for every pqint toein 
(-30, m) , and h(t)  E C(--oo, 00). Suppose that both functions assume values 
in .Rne. Let A(1, x )  denote the greatest eigenvalue of the matrix 

Js (4, 4 = + La;. (4 4 + (Ai;  (4 x ) > * ] ,  

where (1 = ( u ~ ~ ) ~ < ; ,  j<N is a constant symmetric positive-definite matrix. 

Theorem 2.1. 

(a) A(t ,  x) < - u < 0 for (t, x )  & (-30, 00) x R" ; 

Suppose that the following conditions are satisfied: 
* 

' 

(b) llf(tl 0)ll et IV(~)II *{ 

Then the system (2.1) has a unique bounded solution x = x(t)  , (jix(i)/l ~ 3 ) .  If in 
addition the functions J( t ,  x )  and h(l) are almost-periodic with respect to t 
uniformly with respect to x for I$]l G A , then the bounded solution x = x ( l )  is 
also almost-periodic. 

Proof: We note first of all that the proof of the theorem is similar to that 
of Theorem 2, due to Demidovich [21 with a necessary modification caused by 
the term h(f . ) .  Define V(x)  = ( A x ,  x) . We have 

~ ' l ! ~ ~ i ~  =< (A.v, X) < u"iJx$2, 

where R' and u" are positive constants. 

If x = ~ ( 1 )  is a solution of the system (2. l), we obtain 
I 1 

% V(x(1)) = Z ( r l i ( I ) ,  X ( t ) )  = 2(AJ(I, x), x) + 2(Ah(I),  x )  = 
. = 2 ( W ( k  4 - J ( L  0 ) l l  4 + 2(A/ ( t ,  O), x )  i- 2 ( A J 4 ) ,  x) .  

__ - - - __  
From Demidovich's - lemma [2] and condition-(a), we obtain I 

- - __ ____ - - __ 

From condition (b), we obtain 

1 

or 
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1 
2 
- V ( x ( l ) )  4 - kY(#(t)) + rV% (%(I)), 

where 

Using the result on differential inequalities (for example [l], p. l06), we find 

which implies the existence of bounded solutions. 

To prove the uniqueness - of - the bounded solution x = x( l )  , let us consider 
the function Y = (A(% - x ) ,  3: - x ) ,  where x = z(t) is another bounded solution 
of the system (2.1). Then 

' 

4 

so that 

?(I) 4 - 2 2- a' V(l) ,  

that is, 

(2.3)' - /38 1 " 

By letting 4, approach --oo , we see that ~ ( 1 )  = z(1) for all t in (-00, w), so 
that the bounded solution is unique. 

Let us now prove the second part of the theorem. We note first that since 
f ( l ,  x) and . I J ( ~ )  are almost-periodic, condition (b) is satisfied. Suppose that 
i;x(l)jj G R. .  Since !(I, x )  is a uniformly almost-periodic function of t for J[x!\ 4 I t ,  
it follows that, for all 7 > 0 , there exists a a(?) >-0 such that every real inter- 
val of length G includes at least one number 5 such that 

and for such 7 

Let us set 
I 

W )  = ( A  [x ( t  4- 7) - x ( t ) ] ,  x(l  Jr 5)  - %(t)), 
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Then, 

. 

Therefore, 
Y 

I 

(2.4) 

By letting to  approach' - 00, we obtain 

that is, 

IIxU + 4 - jWli < (2.5) 

where i, = 2\'llAll Rd/Z , which proves that the solution x = x(t)  is almost- 
periodic. 

Remark: A similar result can be proven in the case in which f ( t ,  s) is a /382 
periodic function of t uniformly with respect to x for llxll d I< and h ( 1 )  is periodic. 

In what follows, we shall establish the existence of almost-periodic solu- 
tions for a perturbed system of the form 

where I ( / ,  s). is the function defined by Theorem 2.1 and g(t ; x )  is the operator 
defined in section 1. Let us first give the 

' Definition 2.1. The operator g(1; x) defined for (1 ,  x )  e (- 00, 00) x l 1  I' , 
where 11 P is the Banach space of almost-periodic defined on (- +a,=) is said 
to be almost-periodic if ~ ( 1 )  E 111' for every function g ( i f q )  =+(Gy)(l) E rip.  - , 

By using Theorem 2.1 and Banach's fixed-point theorem, we can prove 
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Theorem 2.2. Suppose that the conditions of Theorem 2 . 1  are satisfied and 
that the operator ~ ( 1 ;  x )  satisfies the condition 

iig(t ; 9) - g(L ; + ) I 1  G 4iv  - +Il,i~, . (2.7) 

for all ( t ,  9, 0) E (-00,oo) x A P  . _  x - AP:. 

Then, if l @ ! \ L / K  < 1 , the system (2.6) has a unique almost-periodic solution. 

Proof: For every y E A P ,  let Ty denote the unique almost-periodic solu- 
tion of the system 

_- 
i = f ( l ,  x )  c A d ;  Y), (2.8) 

* 
or, in different notation, 

_. 

= f ( t ,  x )  + (Gp)(L) ; (2.89 

(The existence of this solution is asserted by Theorem 2.1). The operator T 
then has the property that T ( A  P) c A P.. 

Let us show that T is a contraction operator. Let y, 4 E A P  and 3: = Tp , 
y = T+ denote the solutions of the system (2.6) that correspond to y (1) and +(L) 
respectively. 

According to Demidovich's lemma, 

/383 
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Consequently, 

or 
b 

where 

Y 

Using the result on differential inequalities that was used in the proof of 
Theorem 2.1, we get 

V(t) < ] / J / ( t 0 )  - e - 4 w  $- [ W Y  ; +Il / lPj  

\ 

[Translator's note: There seems to be a mistake in this equation.] 
so that 

where 

From inequality (2. lo),  we obtain 

(2.10) 

We shall now show that inequality (2.11) implies 

(2.12) 

Let us suppose that (2.12) is untrue. Then there exist G < 0 and 2 E (-00, w) 
such that . 

/384 - 



Since x(l) and y(/) are almost-periodic, there exists a 7 ,> t o  - t + N( Z) that is 
an ( E/$)-almost-periodic function of x(lj - yj l i  and hence 

_. .- - - 
111 b 

a ]  0: - **- 117 - YIb.lP -k E = l$(l) - y(t)l! G 1) [$) - y(G] - [$(I--+ 5)  - " 

which implies s < 243, Since this is impossible, inequality (2.12) is proven. 

At the same time, inequality (2.12) implies 

that is 

where 

which proves Theorem 2.2. 

Remarks: 1. A similar result can be obtained in the case of periodicity. 

2. An interesting particular case is that of the integro-differential ecpations 
\ '  

__ x = f(C, x )  + g(t ; x )  . 

where 

1 8  

L g(t ; x )  = s k(t  - s)x(s)ds,  

- m  

this operator satisfying Definition 2.2. 
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